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ABSTRACT

Age-related osteoporosis is driven by defects in the tissue-resident mesenchymal stromal cells
(MSCs), a heterogeneous population of musculoskeletal progenitors that includes skeletal stem cells.
MSC decline leads to reduced bone formation, causing loss of bone volume and the breakdown of
bony microarchitecture crucial to trabecular strength. Furthermore, the low-turnover state precipitated
by MSC loss leads to low-quality bone that is unable to perform remodeling-mediated maintenance—
replacing old damaged bone with new healthy tissue. Using minimally expanded exogenous MSCs
injected systemically into a mouse model of human age-related osteoporosis, we show long-term
engraftment and markedly increased bone formation. This led to improved bone quality and turn-
over and, importantly, sustained microarchitectural competence. These data establish proof of
concept that MSC transplantation may be used to prevent or treat human age-related osteopo-
rosis. STEM CELLS TRANSLATIONAL MEDICINE 2016;5:683-693

SIGNIFICANCE

This study shows that a single dose of minimally expanded mesenchymal stromal cells (MSCs) injected
systemically into a mouse model of human age-related osteoporosis display long-term engraftment
and prevent the decline in bone formation, bone quality, and microarchitectural competence. This
work adds to a growing body of evidence suggesting that the decline of MSCs associated with age-
related osteoporosis is a major transformative event in the progression of the disease. Furthermore, it
establishes proof of concept that MSC transplantation may be a viable therapeutic strategy to treat or

prevent human age-related osteoporosis.

INTRODUCTION

Almost a century ago, the axiom “form follows
function” was established by the seminal treatise
of D’Arcy Thompson, who compared, predomi-
nantly, hard tissue structures across phyla [1].
The anisotropy and connectivity of trabecular bone,
and their loss in certain pathologies, are prime ex-
amples of this axiom [1, 2] and are known to affect
the mechanical performance of bone tissue [2—4].
Thus, the regeneration of such an important struc-
tural tissue should aim not only to create new tissue,
but also to recapitulate its functional, anisotropic,
interconnected microstructure. It is surprising,
therefore, that current therapeutic strategies, from
bone-substitute biomaterials to stem cell transplan-
tation, have paid little heed to the form and function
of the regenerated tissue.

Bone is a dynamic tissue, with remodeling-
mediated maintenance regenerating the entire
skeleton every 10 years [5]. Bone formation and

resorption are tightly coupled in this process,
and any imbalance can manifest itself in osteopo-
rosis, a disease representing significant morbidity
and substantial health care burden [6]. Age-
related (type Il, senile) osteoporosis presents
a bone formation deficit caused by age-related
changes in the proliferation and differentiation
capacity of mesenchymal stromal cells (MSCs)
[7, 8]. The resultant uncoupling of remodeling-
mediated maintenance leads to a low-turnover
osteoporotic state and facilitates mechanical
weakness due to loss of bone volume and micro-
architectural integrity, combined with the pres-
ence of old, hypermineralized, damaged bone
[9].

MSCs and the rare skeletal stem cells (SSCs)
present within this population hold significant
therapeutic potential, directly by mediating tissue
repair through differentiation into various muscu-
loskeletal tissues [10], or indirectly by secreting a
myriad of growth factors and immunomodulatory
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cytokines [11]. To date, more than 500 clinical trials using MSCs
have been registered with clinicaltrials.gov, with some trials
showing significant benefit toward treating bone-related condi-
tions [12]. One particular study used intravenous delivery of MSCs
to treat children with osteogenesis imperfecta, demonstrating
an encouraging short-term therapeutic effect [13]. However, early
ambiguities in the identity of MSCs may have contributed to the lack
of long-term effect [14]. Recent breakthroughs elucidating the
hierarchy of musculoskeletal progenitors, particularly the char-
acterization of SSCs [15-18], will likely improve the clinical out-
come of future MSC therapy trials.

Osteoporosis could benefit from MSC therapy, particularly
because MSC depletion drives disease progression; however,
no clinical trials are currently underway or recruiting to assess
the therapeutic potential of MSCs to treat osteoporosis. Because
of poor homing abilities of culture expanded MSC to bone
[19-21], existing animal studies using MSCs to increase bone for-
mation have relied on local administration of MSCs [22], genetic
manipulation [23], or surface modification [21, 24].

Sca-1 null (Sca-1 7/7) mice demonstrate a cell autonomous de-
ficiency in the ability of MSC to support bone formation, facilitating
a low-turnover state with progressive bone loss and mechanical
weakness beyond 6 months of age. As such, osteopenia observed
inSca-1"/~ mice is considered a model of human type Il osteopo-
rosis [25, 26]. These findings suggested that MSCs could be used as
a therapeutic target or cell-based therapy to treat age-related os-
teoporosis. As a first step toward testing this hypothesis, we sought
to determine whether minimally expanded MSCs can engraft long-
terminvivo and prevent the onset of osteopeniain Sca-1~/~ mice.
Indeed, we now demonstrate that a single bolus of minimally ex-
panded, wild-type (WT), donor MSCs prevents the decline of bone
formation, markedly increases bone turnover, and results in the
long-term maintenance of trabecular architectural anisotropy
and connectivity. Because osteoporosis in humans is associated
with a decrease in these microarchitectural features that lead to
increased fracture risk [27], our findings suggest that such MSC
therapy may lead to broad and long-term regenerative conse-
quences that address both the form and function of bone. Further-
more, this work demonstrates the therapeutic promise of
minimally expanded MSC populations.

MATERIALS AND METHODS

Study Design

This controlled laboratory experiment was undertaken to assess
the therapeutic potential of MSCs to treat progressive age-
dependent bone loss in our Sca-1"/" model of human age-
related osteoporosis. All experiments were carried out in
age-matched Sca-1""" or WT mice, with a majority of analysis fo-
cusing on cell engraftment and functional recovery of bone quality.
Sample size was chosen for consistency with previous investiga-
tions of the Sca-1~7~ phenotype [25, 26], and outliers (data points
more than 2 standard deviations above or below the mean) were
removed from the statistical analysis. Multiple donor-cell isola-
tion procedures were carried out, and multiple litters of WT and
Sca-1"" mice were used for transplantation and control cohorts
for this study. This study was not blinded; laboratory standard op-
erating procedures were used for analysis, and specialized, auto-
mated image analysis software (Bioquant, Nashville, TN, http://
www.bioquant.com) was used for consistent and unbiased data.

©AlphaMed Press 2016

MSC Isolation and Transplant

The MSC isolation protocol was modified from that of
StemCell Technologies (Vancouver, BC, Canada, http://www.
stemcell.com). The 5- to 6-month-old male WT or C.FVB-Tg(CAG-
luc,-GFP)L2G85Chco/Fath) (or GFP-LUC) mice were euthanized by
isoflurane overdose and sprayed with 70% ethanol. Workflow
is outlined in Figure 1A. Hind legs were removed and placed on
ice. Bones from the iliac crest, femur, and tibia were removed,
and muscle tissue was removed. Bones from three or four mice
were pooled together in a mortar with 5-7 ml of buffer (PBS
with 2% FBS plus 1 mM EDTA). Bones were crushed with a pes-
tle to release marrow. Marrow was reserved at room temper-
ature, while bone fragments were cut into small fragments,
placed into a 50-ml conical tube, and digested in 0.25% type
| collagenase (StemCell Technologies) for 45 minutes in a shak-
ing incubator at 37°C and 160 rpm. This solution was then
mixed with the bone marrow, and passage 0 (PO) cells were
plated in 10-cm tissue culture dishes at a density of 333,333
per cm? in MSC medium consisting of 80% Minimum Essential
Medium (MEM) Alpha (ThermoFisher Scientific, Oakwood Vil-
lage, OH, https://www.thermofisher.com), 20% mouse MSC
stimulatory supplements (StemCell Technologies), and 50 U/ml
penicillin and 50 ug/ml streptomycin (ThermoFisher Scien-
tific). Medium was changed every 3 days, and cells were grown
until 70%—-80% confluent (7—10 days). PO cells were harvested
by adding 0.25% trypsin-EDTA (ThermoFisher Scientific catalog
number 25200056) for 5 minutes, and any cells remaining on
the plate were discarded. To remove hematopoietic contamina-
tion, harvested PO cells were stained with purified rat anti-
mouse antibodies against hematopoietic cell markers CD45
(clone number 30-F11, eBioscience, San Diego, CA, http://www.
ebioscience.com) and CD11b (clone number M1/70, eBioscience)
at a concentration of 1:167, followed by incubation with
immunomagnetic sheep anti-rat IgG antibody (ThermoFisher
Scientific) as per manufacturer’s instructions, and magnetic
depletion was performed to remove cells conjugated to iron
antibodies. Remaining nonhematopoietic cells were replated
as passage 1 (P1) MSCs in MSC medium at a density of 5,000
cells per cm?. P1 MSCs were grown for 3—4 days until cells were
approximately 60%—70% confluent. At this point, MSCs were
harvested with 2 ml of 0.25% trypsin-EDTA, washed twice in
PBS (without MgCl, or CaCl,), and suspended at a concentra-
tion of 2.0 X 107 cells per ml. In all cases, mice received 2.0 X
10° (except 4.0 X 10° cells in one set of experiments; Fig. 2)
MSCs in a total volume of 100 wl via tail vein injection.

To harvest cells from recipient mice for the short-term stud-
ies, marrow was flushed with a 23-gauge needle, and compact
bone cells were isolated by crushing flushed bone and digesting
with 0.25% type | collagenase solution (StemCell Technologies).
Red blood cells were lysed with red cell lysis buffer. For long-term
engraftment studies, bone marrow and compact bone cells har-
vested from recipient mice for analysis occurred in the same
manner as in the preceding process up until the point of anti-
body staining with the following modifications. Cells were isolated
from individual mice with separate mortars and pestles, and red
blood cells were lysed with red cell lysis buffer.

Multispectral In Vivo/Ex Vivo Imaging
Mice were anesthetized, depleted, and transferred to a Kodak In Vivo

Multispectral Imaging System (Carestream Health, Rochester, NY,
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A

Figure 1. Isolation and differentiation capacity of donor MSCs. (A): A
workflow diagram showing WT MSC isolation. (B): Single cell derived
colony derived from passage 1 donor MSCs (X4 magnification, Crystal
Violet stain). (C): Passage 1 donor MSCs had a CFU-F frequency of 1:
6.5 (n = 3). (D): Passage 1 donor MSCs grown under osteogenic con-
ditions form bone nodules (X4 magnification, Von Kossa stain). (E):
Passage 1 donor MSCs grown under adipogenic conditions form ad-
ipocytes (X 10 magnification, Oil Red O stain). Abbreviations: CFU-F,
colony-forming unit fibroblast; MSCs, mesenchymal stromal cells; P1,
passage 1; WT, wild type.

http://www.carestream.com). Fluorescence measurements of
1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine io-
dide (DiR; ThermoFisher Scientific; 750/830 nm) were acquired
for 5 minutes, x-ray images were acquired for 2.5 minutes, and
color images were acquired by using a 1-second exposure. An-
imals were then euthanized by isoflurane overdose, and organs
and bones were harvested and underwent ex vivo imaging
(same as in vivo). Unmixed 16-bit images were background-
subtracted in Imagel. Pixel intensity measurements were
obtained from the region of interest (ROI) (proximal tibia/distal
femur or harvested organs) and used to determine mean pixel
intensity.

Statistical Analysis

For all statistical analysis, one-way analysis of variance was per-
formed to assess significant differences across groups. If a signif-
icant difference was present, a Bonferroni post hoc test was used
for pairwise comparisons. Data points that were more than 2 stan-
dard deviations above or below the mean were considered
outliers.

Additional materials and methods can be found in the
supplemental online data.

RESULTS

Isolation and Characterization of Donor MSC Population

The cell source is a critical consideration for the development of
cell-based therapies. We reasoned that a population enriched
for clonogenic MSCs would be osteogenic and capable of main-
taining bone homeostasis for long periods. A highly clonogenic
donor MSC population was isolated as previously described [28].
We empirically developed a standard procedure based on
optimized plating density, length of trypsinization, and immu-
nodepletion of hematopoietic cells (Fig. 1A). This approach
consistently yielded a MSC population capable of generating

www.StemCellsTM.com

single cell-derived colonies (Fig. 1B) and retained a high colony-
forming unit fibroblast frequency of approximately 1:6.5 (Fig. 1C).
These minimally expanded MSCs were capable of osteogenic
differentiation, robustly forming bone nodules (brown bone
surrounded by pink alkaline phosphatase-stained cells) (Fig.
1D), with a colony-forming unit osteoblast frequency of ap-
proximately 1:1,300. MSCs were also capable of adipogenic
differentiation, forming adipocytes that exhibit oil red O stain-
ing of fat deposits (Fig. 1E). Passage 1 MSCs express Sca-1, CD44,
CD106, and CD29, markers common to murine MSCs, and are ab-
sent for hematopoietic markers CD45 and CD11b (supplemental
online Fig. 1).

Donor MSCs Are Capable of Delivery to the Long Bones
of Recipient Mice

Short-term homing studies were performed to investigate
whether minimally expanded MSCs could migrate to, and lodge
in, the bone marrow of the Sca-1""" mouse. Recipient mice did
not undergo myeloablative conditioning because this has been
shown to be injurious to local MSCs [29], and future clinical ad-
aptation of the protocol would prohibit such conditioning in el-
derly humans. Before transplantation, donor cells were labeled
with near-IR lipophilic carbocyanine dye DiR, and either 2 X 10°
or 4 X 10° cells were injected into the tail vein. Mice were sub-
jected to in vivo imaging at 24 and 48 hours after injection, fol-
lowed by euthanasia and dissection of organs and bones that
were subsequently imaged ex vivo. Transplanted WT MSCs
were detected in the long bones (tibia and femur) of Sca-177/~
mice and were maintained for a period of at least 48 hours
(Fig. 2A, 2B). The majority of donor signal was found in the
lungs, liver, and spleen of recipient mice (Fig. 2A, 2B). No DiR
signal was detected in naive Sca-1"/" mice (Fig. 2A, 2B). Fluo-
rescence was also observed in the tail at the injection site be-
cause of unavoidable donor cell contact with surrounding
tissue. Mice that received the higher cell dose demonstrated
agreater DiR signal at the proximal tibia/distal femursite in vivo
(supplemental online Fig. 2A) and in visceral organs and long
bones exvivo (supplemental online Fig. 2B). Significantly, trans-
planted MSCs displayed dose-dependent delivery to the long
bones of recipient mice.

Donor MSCs Are Capable of Short-Term Residence
Within the Bone Marrow

We tracked WT MSCs for 2 weeks after transplantation to dis-
cern whether cells were maintained within the bone marrow
of treated mice. Mice were injected with 2 X 10° DiR-labeled
WT MSCs, followed by euthanasia and ex vivo imaging of dis-
sected bones at 1, 7, and 14 days after transplantation. After
imaging, the bone marrow was flushed, and cytometric anal-
ysis was performed. No DiR fluorescence was detected in the
bones or bone marrow cells of naive Sca-1~/" mice at day1l,7,
and 14, whereas DiR* cells were detected in Sca-1""" mice re-
ceiving WT MSC transplant (supplemental online Fig. 3A, 3B).
The average DiR fluorescence intensity of whole bones de-
creased with time, and was consistent with a declining number
of engrafted MSCs assessed (supplemental online Fig. 3A, 3B).
To investigate the location of the transplanted cells within the
bone, Sca-1"/" mice were transplanted as described above
and assessed 2 weeks later. The mean pixel intensity was
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Figure 2. Short-term analysis confirms systemically injected purified MSCs are delivered and retained in the bone marrow, lungs, and liver. (A):
In vivo fluorescent imaging (top) and x-ray (bottom) of untreated naive and DiR* MSC-transplanted Sca-1""" mice. (B): Ex vivo fluorescent
imaging of organs/bones, color (top) and fluorescence (bottom). (C): DiR fluorescence present in bones 2 weeks after DiR* MSC transplant
in Sca-1~/" mice compared with naive Sca-1""" mice and percent presence of DiR-labeled cells in the BM and CB assessed via flow cytometry
(n = 3). Abbreviations: Avg, average; B, bones; BM, bone marrow; CB, compact bone; DiR, 1,1'-dioctadecyl-3,3,3’,3'-tetramethylindotricarbo-
cyanine iodide; H, heart; K, kidney; Li, liver; Lu, lungs; MSCs, mesenchymal stromal cells; S, spleen.

measured in the femurs and tibias of three treated mice, along
with naive Sca-17~ controls, followed by isolation of bone marrow
and compact bone cells separately. Similar DiR fluorescence was
present in femurs and tibias of individual MSC-transplanted mice
(Fig. 2C). Consistent with this finding, cytometric analyses dem-
onstrated evenly distributed donor cell residence within the
bone marrow and compact bone of individual mice.

Transplanted MSCs Are Capable of
Long-Term Engraftment

GFP-LUC mice were used to track long-term MSC engraftment.
This dual reporter transgenic mouse is on the same genetic back-
ground as the Sca-1""" mice used here (BALB/c) and expresses
luciferase and GFP. Low-level GFP expression is present in the
MSC population [30] and absent in hematopoietic cells [31]. Male
mice were chosen as donors to allow the use of Y-chromosome
quantitative polymerase chain reaction (qPCR) in female recipi-
ents as an additional marker. Consistent with published strain
data, very few GFP-positive cells were identified in the bone mar-
row and compact bone harvested from GFP-LUC mice (Fig. 3A).
Significantly, when this fraction was plated and adherent cells
grown to 60%—70% confluence (passage 0), GFP fluorescence
was detected in 40%-50% of cells (Fig. 3B). Adherent cells were
passaged, and hematopoietic cells magnetically depleted (Fig.
1A), before being replated and again grown to 70% confluence.
These passage 1 MSCs expressed low levels of GFP (Fig. 3B)
and were used as the donor cell population for the long-term
transplantation experiments.

The 10-week-old Sca-1"/~ mice were transplanted with 2 X
10° GFP-LUC MSCs and assessed 24 weeks later. Mice were an-
alyzed for GFP expression and Y-chromosome presence by flow
cytometry and Tagman gPCR, respectively. Cells were har-
vested as outlined in Figure 1A and stained with purified rat an-
tibodies against hematopoietic markers CD45, CD11b, and
Terl19 endothelial marker CD31, followed by iron-conjugated
sheep anti-rat antibodies facilitating magnetic immunodepletion
of non-MSCs. The remaining 2% of enriched cells not expressing

©AlphaMed Press 2016

hematopoietic or endothelial markers (data not shown) were an-
alyzed for GFP expression versus near-IR dead cell exclusion. In
the positive control GFP-LUC donor mice, only 0.06% of enriched
cells expressed detectable GFP (Fig. 3C). A low frequency
(0.002%—0.003%) of enriched cells recovered from some Sca-17/~
mice that received an MSC transplant expressed detectable
GFP signal. However, upon normalization to GFP* cells present in
the same cell fraction of GFP-LUC mice, these numbers represent
3%—-5% engraftment (Fig. 3D, 3E). No GFP signal was detected in
naive Sca-1~/" mice (Fig. 3F).

To confirm these findings, genomic DNA was isolated from
the enriched cell population and analyzed by Tagman gPCR de-
tection of the donor male Y-chromosome presence. Donor en-
graftment of 0.0005%—0.02% was present in the enriched cell
fraction (Fig. 3G and supplemental online Fig. 4A). The enriched
cell population represented approximately 2% of total cells har-
vested from the bone marrow and compact bone. Therefore, do-
nor contribution of 0.00001% and 0.0005% within the total cell
population was observed (Fig. 3G). Mouse MSCs are extremely
rare in situ and comprise only 0.0003% of cells in the bone mar-
row, which equates to 3 cells per million [32]. Donor MSC con-
tribution represented significant engraftment of between 4 and
224 cells per million of the enriched cell fraction and 0.1 and
4.5 cells per million of total bone cells (Fig. 3G). Long-term en-
graftment was detected in 5 of 15 recipient mice, although levels
below the detection limit could have been present. Significantly
higher engraftment was revealed in the lungs of all recipient
mice analyzed, with an average engraftment of 0.23%, or
2,300 cells per million of total lung cells (Fig. 3G), proportionate
to the large numbers of transplanted cells detected in the lungs
within 48 hours of transplantation. No engraftment was identi-
fied in the liver of recipient animals (Fig. 3G).

A previous study documented upregulation of monocyte col-
ony stimulating factor 1 (M-CSF) expression in lung-entrapped
MSCs [33]. As M-CSF is a cytokine required for osteoclast forma-
tion, we tested whether elevated M-CSF levels were present in
the serum of transplanted animals. However, no difference in
M-CSF between MSC-transplanted and naive Sca-1""" control
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Figure3. Transplanted GFP* MSCsare capable of persistent engraftment in the marrow/endosteal region of Sca-1 ~/~ for6 months. (A-F): Flow
cytometric analysis. (A): GFP signal of total bone marrow/compact bone cells from donor GFP-LUC mice. (B): GFP signal of donor MSCs at passage
0 and 1. (C): GFP signal of enriched cells from donor GFP-LUC mice. (D, E): Two examples of mice that displayed GFP* cells. (F): GFP signal was
absent from naive Sca-1~"" mice. (G): Table displaying quantitative polymerase chain reaction detection of Y-chromosome engraftment; per-

cent donor engraftment and engrafted cells per million of enriched nonhematopoietic/nonendothelial fraction of bone marrow/compact bone
cells, percent donor engraftment, and cells per million in total nucleated bone marrow cells; percent donor engraftment and cells per million of
total lung cells; and percent donor engraftment in total liver cells. Abbreviations: ctrl, control; GFP, green fluorescent protein; LUC, luciferase;
MSCs, mesenchymal stromal cells; ND, not determined; PI, propidium iodide.

mice was detected (data not shown). Along with M-CSF, Receptor
Activator of Nuclear Factor k-B Ligand (RANKL) is required for os-
teoclast differentiation and is primarily produced by osteoblasts
and osteocytes. Thus, we assessed whether RANKL levels were

www.StemCellsTM.com

elevated in the serum of transplanted animals. Similar to
M-CSF levels, no significant difference in RANKL levels between
MSC-transplanted and naive Sca-1 ~/~ control mice was detected
(data not shown).
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Transplanted Sca-1~/~ Mice Displayed Improved
Trabecular Bone Formation, Bone Turnover, and
Osteoclast Frequency

Previously, we demonstrated that Sca-1"/~ mice have reduced
active bone formation during aging, driven by defective self-
renewal of MSCs and associated reduction in osteoblasts [25]. De-
ficiencies in bone formation are likewise present in human aging
and clinical osteoporosis [34, 35]. We tested whether a single, sys-
temic dose of WT MSCs into Sca-1/~ mice could prevent the
bone deterioration observed by 6 months of age. Sca-1~7/~ mice
were transplanted as described above, and 24 weeks later, at 10
and 2 days before euthanasia, mice were injected with calcein
green, a fluorescent marker of bone formation. WT mice dis-
played greater bone formation, observed by bright green calcein
labeling in trabecular tissue of the proximal tibia, than MSC-
transplanted mice, which themselves showed more formation
than naive Sca-1~/~ mice (Fig. 4A). Quantitatively, naive Sca-
177" mice exhibited a significantly reduced area undergoing
active bone formation compared with WT mice, as indicated by
mineralizing surface area normalized to total bone surface area
(MS/BS). Significantly more area of active bone formation occurred
in MSC-transplanted Sca-1""" mice, with MS/BS nearly equaling
that of WT mice (Fig. 4B).

We further analyzed calcein integration to elucidate whether
the actual rate of bone formation was impaired in Sca-1""" mice
and whether WT MSC transplant could also blunt this defect. The
width between calcein green labels in the 8-day interim specifies
the mineral apposition rate, which is used to calculate the bone
formation rate (BFR) normalized to bone surface (BFR/BS) and
bone volume (BFR/BV). Indeed, the BFRs (both BFR/BS and
BFR/BV) were significantly impaired in naive Sca-1""" mice ver-
sus WT controls (Fig. 4C, 4D). In contrast, Sca-1""" mice that re-
ceived an MSC transplant displayed a significantly improved rate
of bone formation (BFR/BS and BFR/BV; Fig. 4C, 4D).

Bone resorption is also perturbed in Sca-1 ~/~ mice because
of an intrinsic osteoclast defect in addition to an inability of Sca-
17/~ osteoblasts to support osteoclast differentiation, leading to
reduced osteoclast numbers and activity in vivo [25, 26]. There-
fore, we next determined whether osteoclast number and surface
area were improved in transplanted animals. Sca-1 ~/~ mice were
transplanted as described above, and osteoclast number and sur-
face area were assessed via tartrate-resistant acid phosphatase
(TRAP) positive staining. Naive Sca-1~/~ mice displayed signifi-
cantly reduced bone surface occupied by osteoclasts (OcS/BS)
and also a reduced number of osteoclasts on the bone surface
(OcN/BS) compared with WT control mice (Fig. 4E, 4F). Sca-1~/~
mice transplanted with WT MSCs revealed significant improve-
ment of OcS/BS (Fig. 4E) and OcN/BS (Fig. 4F).

The reduced bone turnover that occurs in osteoporosis leads
to the highly mineralized, homogeneous, old bone, which we
have observed in Sca-1~7/~ mice [25, 26]. Quantitative backscat-
ter electron imaging (BSE) was used to quantify the average min-
eral content (represented by Max Gray value) and assess full
width at half-maximal height (FWHMH) values, an indicator of
mineral heterogeneity. Large FWHMH values represent a het-
erogeneous mineralization profile of highly mineralized ma-
ture bone mixed with acutely mineralized matrix and new
bone and are associated with higher bone turnover, whereas small
FWHMH values indicate the homogeneous, highly mineralized, old
bone associated with low bone turnover. Six months after MSC
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transplant, Sca-1"/" treated mice had astonishingly high
FWHMH values (Fig. 4G). FWHMH values in MSC-transplanted
mice were nearly 200% above those observed for both WT and
untreated Sca-1~/~ mice, indicating an exceptionally high level
of bone turnover in MSC-transplanted mice.

Transplanted Sca-1 =/~ Mice Displayed Improved
Microarchitectural Characteristics

We sought to determine whether bone formation and quality
gains observed in MSC-transplanted mice prevent the microarchi-
tectural defects that occur in Sca-1~/~ mice [26]. The 10-week-
old Sca-1"/~ mice were transplanted with 2 X 10° WT MSCs
and assessed 24 weeks later, at 8.5 months of age, the time point
when the osteopenic condition peaks in Sca-1 ~/~ mice [26]. Com-
puted tomography (CT) is used clinically to identify microarchitec-
tural aberrationsin trabecular tissue associated with human aging
and osteoporosis [36, 37]. Here, we performed microCT analyses
on the proximal tibias of mice transplanted with WT MSCs, along
with WT and naive Sca-1"/" controls. Trabecular connectivity-
density (Conn.D), a measure of the interconnectivity of trabecular
structures that provides strength to bone, displays a characteris-
ticdecline in osteoporosis [36]. Sca-1 ~/~ mice presented with sig-
nificantly lower connectivity-density versus WT mice (Fig. 5A, 5G).
However, Sca-1~/~ mice that received a single transplant of MSCs
displayed significantly improved connectivity-density (Fig. 5A)
and similar trabecular interactions to WT mice (Fig. 5G). Trabec-
ular bone is highly anisotropic; thus, trabeculae are orientated
preferentially in the direction of load bearing and exhibit a high
degree of anisotropy (DA). Human aging and osteoporosis are
hallmarked by decreased anisotropy [37].

Decreased anisotropy has been observed in another model of
murine age-related osteoporosis [38], and we demonstrate
herein a similar trend in the Sca-1~/~ mouse (Fig. 5B), Interest-
ingly, Sca-1 ~~ mice transplanted with WT MSCs demonstrated
normal anisotropy (Fig. 5B).

Other clinically relevant osteopenic transformations present
in the proximal tibia of Sca-1 ~/~ mice include decreased trabec-
ular bone volume fraction (BV/TV), fewer trabecular structures
(Th.N), and an associated increased space between adjacent tra-
becular structures (Th.Sp) (Fig. 5C—5E). Osteopenic increase in
Structural Model Index (SMI) was also present in Sca-1""" mice
and represents a progression toward weaker rod-shaped trabec-
ulae in lieu of superior plate-like trabeculae (Fig. 5F). Specific sta-
tistical differences observed between WT and naive Sca-1"""
mice regarding BV/TV, Tb.N, Th.Sp, and SMI were lost between
WT and MSC-transplanted Sca-1""" mice, suggesting improve-
ments in these metrics of osteoporosis (Fig. 5C-5F). Overall,
microCT images of tibia of WT, untreated Sca-1""", and MSC-
transplanted Sca-1 /" mice clearly reveal that transplanted ani-
mals present a trabecular structure similar to WT mice, with
obvious improvements in connectivity (Fig. 5G).

DiscussioN

Recent lineage tracing experiments have determined that within
the MSC population, SSCs do indeed exist [15-18, 39]. Stem cells
within the MSC population are required for long-term homeosta-
sis, and their loss affects bone mass [18, 25]. Subsets of the MSC
population can sense injury [40, 41] and effect repair and homeo-
stasis through extensive clonal division, differentiation [18, 39],
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mice. (B): Percent mineralizing surface normalized to bone surface. (C): Bone formation rate normalized to bone surface. (D): Bone formation
rate normalized to bone volume. (E): Tartrate-resistant acid phosphatase (TRAP) analysis of osteoclast surface normalized to bone surface. (F):
TRAP analysis of osteoclast number normalized to bone surface. (G): BSE imaging quantification of FWHMH, a measure of bone turnover. *,p <
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wild type.

and paracrine effects [17, 42]. The findings that defective MSC
self-renewal underlies age-related osteoporosis in a number of
models suggest that MSCs, and by extension, SSCs within the het-
erogeneous population, are a potential therapeutic target for sys-
temic skeletal diseases.

In this study, we determined that transplanted syngeneic
MSCs led to persistent engraftment and improved bone forma-
tion and bone health in age-related osteopenic mice, at least
6 months after a single systemic injection. Additionally, improve-
ments in bone homeostasis that resulted from maintaining
tissue-resident MSCs further implicated the decline of MSCs as-
sociated with age-related osteoporosis as a major transforma-
tive event in the progression of the disease.

The Sca-1"/~ mouse is an ideal model of human age-related
(type Il) osteoporosis because, like the human condition, MSC de-
fects cause an initial decrease in bone formation, which facilitates
a reciprocal decrease in bone resorption, leading to a low-
turnover state. This is in contrast to postmenopausal (type I) os-
teoporosis, which is driven by increased osteoclast activity

www.StemCellsTM.com

causing increased bone resorption that precipitates a high-
turnover state. Sca-1"/~ mice display reduced bone formation
[25], and trabeculae display higher mineralization with decreased
turnover [26], characteristics confirmed in this study. Sca-17/~
mice also exhibit reduced osteoclast numbers in vivo [25], also
verified in this study. Together, reduced bone formation coupled
with reduced osteoclast numbers and diminished bone turn-
over are indicative of fewer bone-remodeling cycles occurring
inthe Sca-1~/~ mice. These factors lead to older, highly miner-
alized bone, which, together with a reduction in overall bone,
caused the mechanical weakness of trabecular tissue described
previously [25, 26]. This model is consistent with human age-
related osteoporosis, with a low-turnover state hallmarked
by diminished and old, hypermineralized, mechanically inferior
bone [9].

We have shown that WT MSC transplantation into Sca-1 =/
mice can indeed improve bone health. Remarkably, the Sca-1"""
mice transplanted with a single bolus of MSC showed improved
bone formation 24 weeks after transplantation. Likewise, bone
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catabolism was increased, leading to increased levels of bone
turnover. These results together suggest that transplanted MSCs
were capable of initiating or sustaining bone-remodeling cycles.
This could be because of the ability of WT transplanted stromal
cellstoinitiate and support osteoclast activity and/or the capacity
of the transplanted WT MSCs to support bone formation itself.
Old bone present in the low-turnover, age-related osteoporotic
state accumulates microdamage, possibly reducing material
toughness, and is hypermineralized, thereby increasing bone
stiffness. Together, these changes may increase the likelihood
of bone failure [9, 43, 44]. By restoring bone turnover in MSC-

©AlphaMed Press 2016

transplanted animals, remodeling-mediated maintenance would
return, allowing the resolution of microdamage and hyperminer-
alization, potentially improving mechanical strength. However,
the clinical relevance of microdamage and hypermineralization
independently leading to increased fracture risk in humans re-
mains controversial [43]. Mechanical testing of our MSC trans-
plant system may be a good model to assess the mechanical
and potentially clinical relevance of improved bone health, inde-
pendent of anabolic bone growth.

It was also remarkable that one bolus of donor MSCs pre-
vented age-related osteoporosis phenotypes as observed by
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microCT 6 months after transplant. In human aging/osteoporosis,
trabecular bone volume, number, and thickness decrease,
whereas spacing increases [36, 45]. Anisotropy and connectivity
decrease [36, 37], and SMI increases [46]. The Sca-1"/" model of
age-related osteoporosis displayed similar vertebral microarchi-
tectural abnormalities [26], as does the C57BL/6J model of
age-related osteoporosis [38]. Here we confirmed such micro-
architectural aberrations at the metaphyseal tibial site.

Interestingly, transplanted Sca-1""" mice displayed com-
plete protection from the phenotypic loss of connectivity and
anisotropy, and partial protection from microarchitectural im-
pairments of bone volume fraction, trabecular shape, number,
and spacing. The mechanical integrity of trabecular bone is de-
pendent on specific factors: bone volume, microarchitectural
properties including connectivity and anisotropy, and matrix
and mineral properties [27], all of which are affected in both hu-
man and Sca-1""" osteoporosis. First documented by D’Arcy
Thompson in 1917, trabeculae maintain strength through con-
nections with adjacent structures akin to girders in a high-rise
building [1]. Loss of connectivity (lower Conn.D) represents dis-
connected trabeculae free floating within the medullary cavity,
imparting no mechanical strength to the structure. It has been ac-
cepted, since the seminal treatise of Julius Wolff, that trabecular
orientation is also important to mechanical strength—because of
the anisotropic nature of cancellous bone—and that trabecular
architecture is compromised in bony pathologies [2]. Remodeling
results in preferential trabecular orientation in the direction of
load bearing, which provides the requisite compressive resistance
to ambulatory load. Loss of anisotropy (lower DA) represents a
loss of trabecular resistance to load bearing, increasing the likeli-
hood of compression fracture. Thus, the improved connectivity
and the maintenance of anisotropy realized in transplanted ani-
mals represent potential improvement in bony mechanical
strength and the restoration of a functional microarchitecture
in MSC-treated Sca-1"/" animals. Specifically, the change in tra-
becular bone volume observed in transplanted animals alone can-
not explain this restoration in function because bone remodeling
was also increased. However the increased trabecular remodel-
ing, without significant changes in bone volume, resulted in
microarchitectural improvements that, importantly, restored
the wild-type structural anisotropic phenotype.

Indeed, we observed increased bone formation in trans-
planted animals, which seemed to contradict the modest im-
provements in bone volume observed by microCT. It is quite
possible that improvements to overall bone formation in trans-
planted animals were being mitigated by the observed increased
osteoclast activity. This increase in bone turnover was supported
by the increase in the heterogeneity of mineral densities ob-
served by backscatter electron photomicrography. Standard
parathyroid (PTH) treatment for osteoporosis elicits a similar dy-
namic interaction between bone formation and resorption. Initial
PTH-mediated bone formation gains are eventually mitigated by a
reciprocal increase in resorption. The period where formation ex-
ceeds resorption defines the “anabolic widow” in which PTH
treatment is most effective and usually lasts approximately 1 year
[47]. To enlarge this anabolic window, combination therapy that
includes bisphosphonates to decrease resorption is often recom-
mended [48]. Thus, the use of bisphosphonates could potentially
blunt the increased osteoclast activity observed after systemic
MSC transplantation and realize more dramatic improvements
in trabecular bone formation.

www.StemCellsTM.com

Transplanted MSCs are capable of long-term, albeit low-level,
engraftment to endosteal bone and bone marrow in Sca-1""~
mice, whereas engraftment in the lungs is three orders of magni-
tude higher than in the bone/bone marrow of recipient mice.
Passive entrapment of donor cells within the vasculature cannot
be ruled out because we did not determine whether the cells
extravasated; however, the length of donor cell residency sug-
gests engraftment. Murine bone marrow MSCs are exceedingly
rare, with a frequency of 3 per million cells reported in BALB/c
mice [32]; thus, comparable presence of donor MSCs within the
recipient bone cellularity represents a significant contribution.
Rare engraftment has been documented in other long-term
MSC tracking studies that show similar therapeutic effect
[49]. Potentially, donor MSCs could have differentiated into os-
teoblasts and subsequently matured into osteocytes. Osteo-
cytes are known to survive for years within bone and are
considered to play a major role in overall bone homeostasis
[50]. Thus, a small number of donor-derived osteocytes could
make significant contribution to relief of Sca-1 =/ osteopenia.

Donor MSCs were also detected in the lungs of recipient mice
24 weeks after transplant. Although not surprising that MSCs
lodged within the lungs during short-term cell transplant exper-
iments, it was interesting that they remained for an extended pe-
riod of time. Transplanted MSCs in the lung are known to secrete
therapeutic factors [33]. Thus, we cannot rule out the possibility
that donor MSCs present in the lungs of Sca-1""" mice may con-
tribute to the therapeutic effect that we observed; however, we
demonstrated that secretion of M-CSF by lung MSCs does not un-
derlie the observed increased osteoclastogenesis in transplanted
mice. In addition, we investigated whether donor MSCs presentin
either the lung or bone marrow were acting via RANKL secretion
to increase osteoclastogenesis. Interestingly, RANKL was not ele-
vated in MSC-transplanted animals, suggesting another mecha-
nism of action. However, RANKL is presented in both secreted
and membrane-bound forms present on the surface of osteocytes
and osteoblasts, with the latter displaying much higher osteoclas-
tic activity [51]. Our analysis of transplanted mouse plasma could
only detect the secreted form of RANKL; hence, upregulation of
membrane-bound RANKL expression in treated animals could
cause the increase in osteoclastogenesis.

Recently, it was found that a Sca-1-positive MSC population
with a similar surface profile to the MSCs used in this study
(Sca-1+CD29+CD45—CD11b—) is recruited to bone-remodeling
sites, leading to bone formation. This action was mediated by
the release of active transforming growth factor 8 (TGF-81) from
bone by osteoclastic catabolism and was essential in coupling re-
sorption to formation [52, 53]. Sca-1 has been shown to suppress
the accessibility of the TGF- receptor complex to ligand binding
[54]. Therefore, any TGF-B-mediated chemotaxis to sites of
bone remodeling could be lost because of unabated TGF-S sig-
naling in Sca-1"/" MSCs, uncoupling the bone-remodeling pro-
cess. Perhaps transplanted Sca-1+ MSCs were capable of proper
recruitment to bone-remodeling sites, enabling proper initia-
tion or maintenance of bone formation, or proper coupling with
osteoclasts.

Aside from cytokine and growth factor-mediated paracrine
effects elicited by MSCs, recent evidence suggests that MSCs
can elicit effects through vesicle-mediated transport of various
proteins and RNAs [55]. One particular study documented pheno-
typic correction of secondary osteoporosis in a murine model
of lupus (Fas deficient MLR/Ipr mice) via systemic WT MSC
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transplant. The authors concluded that Fas was donated to the bone
marrow MSCs of MLR//pr MSCs through vesicle transfer, which initi-
ated signaling events that improved long-term MLR//pr bone marrow
MSC function [56]. Sca-1 is a glycosylphosphatidylinositol-anchored
lipid raft-associated protein that has beenimplicated in the disruption
of broad Src kinase signaling [57], as well as inhibition of TGF-8 [54]
and peroxisome proliferator-activated receptor vy (PPARYy) signaling
[58]. We have previously observed high levels of Sca-1 protein within
cell vesicles of wild-type mouse MSCs (J. Kiernan and W.L. Stanford,
unpublished data). It will be interesting to test whether a similar mech-
anism occurs in our transplant model, with Sca-1 being transferred via
vesicles from donor Sca-1"* MSCs to tissue-resident Sca-1~~ MSCs
(or other target cells) in transplanted mice, improving their function.

It has been demonstrated that culture expanded MSCs (both
human and rodent) exhibit poor homing to the bone marrow [19],
apparently because of large size [20] and inappropriate homing
receptors [21, 59, 60]. In addition, efforts to modify the surface
profile of MSCs to increase vascular attachment and homing have
been reported, although it is unclear whether such strategies are
amenable to clinical use [21, 60, 61]. Furthermore, our results
demonstrate that such manipulation may not be necessary,
and our minimally expanded MSCs (passage 1) highlight the utility
of limited in vitro expansion.

CONCLUSION

As afirst step to assess the capacity of MSCs to treat osteoporosis,
we asked whether transplanted MSCs could maintain residence in
the bone marrow long-term after intravenous transplantation
and prevent the initiation of osteopenic pathologies in the Sca-
17/~ mouse model of age-related osteoporosis. We show that
unmodified, low-passage MSCs are indeed capable of long-term
bone marrow engraftment. The MSC-transplanted Sca-1"~
mice demonstrated increased bone quality and normal tra-
becular connectivity and anisotropy, suggesting that low-level
engraftment of a single bolus of MSCs is sufficient to blunt the de-
velopment of osteopenic and osteoporotic phenotypes for at
least 24 weeks. Given the numerous ongoing clinical trials utilizing

MSCs, we suggest that ancillary studies should be added to these
clinical trials to determine whether transplantation of MSCs
increase bone remodeling and improve bone health in the
MSC-treated patients. These ancillary studies, or subsequent
dedicated clinical trials, could determine whether age-related
osteoporosis—a common, debilitating, and costly disease—
could be treated by MSC transplantation. If MSC-mediated im-
provements in bone health and microarchitectural competence
lead to fewer osteoporotic fractures in humans, this would em-
phasize clinical relevance of addressing bone health, turnover,
and form, along with bone volume and density, in age-related
osteoporosis treatment.
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